Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

Écrire une réponse

Attention : Aucun indice ou demande d'aide concernant les énigmes de Prise2Tete n'est accepté sur le forum ! Rends-toi sur le cercle des sages si tu as besoin d'aide !
Tout nouveau message ou sujet ne respectant pas cette règle sera supprimé, merci.
Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Options
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Un berger a 40 moutons, ils meurent tous sauf 18, combien en reste-t-il ?

Retour

Résumé de la discussion

PRINCELEROI
05-08-2013 20:32:01

Il s’agit à nouveau d’un problème de chapeaux. Le congrès annuel des myopes se réunit. Un jeu est organisé avec 11 des congressistes. Après quelques minutes de discussion, pendant lesquelles les 11 myopes ont pu convenir de la stra­tégie qu’ils allaient utiliser, l’arbitre du jeu pose un chapeau noir ou rouge sur la tête de chacun et dispose les joueurs en cercle de telle façon que :
- Le myope 1 voit le chapeau du myope 11 et lui seulement ;
- Le myope 2 voit le chapeau du myope 1 et lui seulement ;
- Le myope 3 voit le chapeau du myope 2 et lui seulement ;
- ...
- Le myope 11 voit le chapeau du myope 10 et lui seulement.
Simultanément, chacun des 11 myopes indique la couleur du chapeau qu’il pense porter.En répondant au hasard, ils ont peu de chance de perdre, mais l’arbitre a pu les espionner pendant qu’ils parlaient avant l’épreuve et il est possible qu’il exploite ce qu’il a en­tendu pour les faire perdre. Pourtant, même dans un tel cas, les 11 joueurs sont certains de gagner. Quelle stratégie ont-ils convenu qui assure à 100 % que l’un d’eux (au moins) proposera la bonne couleur pour le chapeau qu’il porte ?
Plus étonnant, et maintenant on est encore plus proche d’un paradoxe, j’attends des lecteurs qu’ils résolvent un second problème :
- Prouvez que si l’un des myopes est en réalité un aveugle, alors cette fois aucune stratégie convenue à l’avance ne peut fonctionner dans 100 % des cas. Notez bien que, comme précédemment, on ne demande aux joueurs que de s’ar­ranger pour qu’au moins l’un d’eux devine correctement la couleur du chapeau qu’il porte.
Cette seconde partie du problème consiste à démontrer ce qu’on nomme un « résultat négatif ». L’histoire des mathé­matiques en compte de nombreux : la démonstration découverte par les savants grecs que √2 n’est pas un nombre rationnel (c’est-à-dire qu’il n’existe pas deux entiers p et q, tels que √2 = p/q) est sans doute le premier résultat de ce type. Ici, il faut démontrer qu’aucune stratégie de jeu n’est possible si la ronde des 11 personnages est composée de  10 myopes et 1 aveugle.

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete