Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

Écrire une réponse

Attention : Aucun indice ou demande d'aide concernant les énigmes de Prise2Tete n'est accepté sur le forum ! Rends-toi sur le cercle des sages si tu as besoin d'aide !
Tout nouveau message ou sujet ne respectant pas cette règle sera supprimé, merci.
Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Options
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Si il y a 78 pommes et que vous en prenez 43, combien en avez-vous ?

Retour

Résumé de la discussion

Ebichu
12-04-2015 12:44:46

Voici la première d'une série d'énigmes tournant autour du même sujet. Certaines seront corsées, car faisant appel à des techniques mathématiques inhabituelles. Mais nous allons commencer par du classique.

n nobliaux sont assis autour d'une table ronde (ce qui sera important plus tard), et se répartissent n-1 chevalières (ce qui est important pour le mauvais jeu de mots du titre). Un nobliau peut avoir plusieurs ou même la totalité des chevalières.

Combien existe-t-il de répartitions différentes de ces n-1 chevalières ?

Pour la bonne compréhension de l'énoncé, deux répartitions peuvent être symétriques et néanmoins différentes : elles ne sont identiques que si chaque nobliau a le même nombre de chevalières dans les deux répartitions.

PS1 : une chevalière est une bague, à ne pas confondre avec la chevaleresse, qui est l'équivalent féminin du chevalier.

PS2 : les chevalières ne sont pas distinctes ; mais les nobliaux, oui. Par exemple, s'il y a 8 nobliaux (et donc 7 chevalières), une répartition possible est [25000000]. Par ailleurs, les répartitions [00000052] ou [02500000] sont deux autres répartitions, différentes de la première.

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete