Salut,
je passe beaucoup de temps sur le jeu Tchisla en ce moment (un genre de "compte est bon"), et j'ai pas mal séché avant de trouver quelques résultats intéressants.
Les règles sont simples:
- un seul chiffres de 1 à 9 est utilisé, N fois dans les calculs
- la concaténation de ce chiffre est possible (i.e. on peut faire 555 avec trois 5, mais pas 510 avec 5 et 10=5+5)
- les opérations autorisées sont +, -, *, /, ^, ! et racine carrée (pas de racine n-ième)
- le but est d'utiliser le moins de fois le chiffre initial pour atteindre un résultat donné. Exemple: 16 = 2^2^2 plutôt que 16=2*2*2*2, ou plus compliqué 71 = racine(7!+7/7) plutôt que 77-7+7/7
A partir de là, quelle est la plus petite puissance de 2 qui ne puisse être calculée avec maximum quatre 8?
Pour éviter de tester toutes les puissances de 2 dans la case, la réponse valide le total de tous les 8 utilisés sur toutes les puissances de 2 jusqu'au nombre en question inclus.
Spoiler : [Afficher le message] 1024 se fait avec trois 8.
En effet, 5/2 * 4 = 10.
A vous de trouver le lien...