Pour fêter mon 1000è message, voici un petit problème d'optimisation que j'ai recons- titué sur de lointains souvenirs et que j'avais alors trouvé très instructif. Je n'ai pas vu de sujet similaire sur le site: je suis désolé si j'ai mal cherché.
Avec mon VTT, je me trouve au point A d'un champ rectangulaire ABCD et je souhaite me rendre le plus vite possible au point C diagonalement opposé à A.
Ce champ, sur lequel mon VTT roule à 18 km/h, mesure 26 km de long sur 12 km de large et il est bordé sur le grand côté AB par une route en bonne état qui me permet d'avancer à 30 km/h.
Si je coupe par la diagonale, je vais mettre 60xV(26²+12²)/18 = (20/3).V205, soit plus de 95 mn. Si je choisis de prendre la route, puis de rejoindre le point C perpendiculai- rement à cette route, le temps nécessaire sera de 60x(26/30+12/18) = 92 mn, ce qui est un peu mieux.
Mais je suis vraiment pressé et j'ai trouvé un chemin qui me permet d'aller au point C en un temps minimum. Quel est la durée de mon parcours ?
La case-réponse valide la solution exprimée en mn.
Bon amusement (cette dernière expression n'est pas de moi )