Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

Écrire une réponse

Attention : Aucun indice ou demande d'aide concernant les énigmes de Prise2Tete n'est accepté sur le forum ! Rends-toi sur le cercle des sages si tu as besoin d'aide !
Tout nouveau message ou sujet ne respectant pas cette règle sera supprimé, merci.
Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Options
Sécurité

Répondez à la devinette suivante : 

Le père de toto a trois fils : Riri, Fifi et ?

Retour

Résumé de la discussion

gilles355
06-01-2013 12:09:00

Bonjour, bonne année wink

En cette nouvelle année, voici une petite recherche mathématiques rigolote.

Imaginons que nous plions une feuille en deux vers la droite puis que nous regardons la forme obtenue une fois relâchée nous obtenons une figure. Nous répétons cette opération c'est à dire on plie toujours vers la droite.

Evidemment en pratique au bout du 3ème ou 4ème pliage, il nous serait impossible de continuer mais dans notre monde théorique des maths on va supposer que l'on peut continuer ainsi à l'infini.

Sur le dessin ci dessous je vous ai présenter les premières étapes.

http://www.prise2tete.fr/upload/gilles355-mathej.jpg
http://www.prise2tete.fr/upload/gilles355-mathej.jpg

J'ai fléché le parcours, on obtient donc à l'étape 0 ( quand on n'a pas encore plié la feuille ) une flèche vers la droite, pour l'étape 1, une flèche vers la droite et une vers le haut etc.

Ma première question est pouvez vous me dire combien y aura t-il de flèches vers la droite, le haut, la gauche et le bas au bout du 8ème pliage.

Réponse à valider dans la case réponse sous le format DxxHyyGzzBww où xx est le nombre de flèches à droite, yy le nombre de flèche vers le haut etc.

La deuxième question est pouvez vous me donner une formule ou explication pour le nième pliage ?

Enfin pour ceux qui aiment les jolis dessins, pouvez vous me représenter la forme des pliages si on alterne un pliage vers la droite puis un vers la gauche etc.


Voilà amusez vous bien et n'hésitez pas à me poser des questions wink

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete