Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

Écrire une réponse

Attention : Aucun indice ou demande d'aide concernant les énigmes de Prise2Tete n'est accepté sur le forum ! Rends-toi sur le cercle des sages si tu as besoin d'aide !
Tout nouveau message ou sujet ne respectant pas cette règle sera supprimé, merci.
Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Options
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Dans une course, vous doublez le 31ème, en quelle position êtes-vous ?

Retour

Résumé de la discussion

cogito
30-06-2013 12:53:12

Voici une énigme tirée d'un résultat très élégant :

Soit a, b et c trois nombres réels distincts deux à deux.
Trouvez trois nombres p, q, r exprimés en fonction de a, b et c tels que que l'on ait la propriété suivante :
[TeX](p+q+r)^2=p^2+q^2+r^2[/latex].

L'énoncé ci-dessus n'est pas très clair, et en lisant vos remarque je me suis aperçu
qu'il y avait une solution non trivial mais simple (mais qui par contre n'est pas très élégante smile ). Donc je vais reformuler l'énoncé (en essayant de définir plus précisément le concept de "solution élégante" lol) :

Trouver trois fonctions f, g et h (non trivial wink ) telles que quelque soit trois nombre réels a, b et c distincts deux à deux on ait :

[latex](f(a,b,c)+g(a,b,c)+h(a,b,c))^2 = f(a,b,c)^2+g(a,b,c)^2+h(a,b,c)^2[/TeX]
Une solution élégante est une solution où f g et h sont les mêmes fonctions à permutations des variables près.

Du coup je rajoute aussi un peu de temps.

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete