Processing math: 100%
Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #76 - 18-11-2015 13:44:06

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3827

Suite de onmbres à destin incertain...

Merci Masab pour ta grande contribution à ce sujet. Eh oui, j'aurais aimé bien sûr que la théorie prenne le pas sur la vérification systématique, mais l'objectif est atteint. Quel genre de questions te poses tu encore ?

#0 Pub

 #77 - 18-11-2015 16:26:49

masab
Expert de Prise2Tete
Enigmes résolues : 44
Messages : 971

suite de nombres à drstin incertain...

Par exemple il y a la suite u1=9971,u2,...,uk,... qui semble avoir la propriété suivante : pour tout entier k1 l'entier uk est le début de l'entier uk+2.
Je l'ai vérifié jusqu'à u41 mais ça reste à prouver.

On trouve de nombreux exemples de ce genre, et même avec des périodes autres que 2.

 #78 - 19-11-2015 08:48:41

nodgim
Elite de Prise2Tete
Enigmes résolues : 0
Messages : 3827

Suite de nombres à destin icnertain...

Le cas que tu cites peut s'expliquer assez facilement, tout au moins pour la période 2.
Prenons le cas de 996, par exemple.
996
1815
996

Ajoutons 1:
1) 996-1
2) 1815-7
3) 996-12

On a de la chance, 12 commence par 1 et est donc une prolongation de 1). A partir de là, tout va dérouler.
1) 996-1
2) 1815-7
3) 9961-2
Pour trouver 4) il suffit de prendre 2) car 1) donne 2) et 3) est une prolongation de 1), et d"ajouter 3 (la somme 1-2 de 3).
4) 18157-3
Pour trouver le 5) il suffit de prendre 3) car 2) donne 3) et 4) est une prolongation de 2), et d'ajouter 10, somme de 7-3 de 4).
5) 99612-10
etc...
Pour trouver k, il suffit de prendre k-2 car k-3 donne k-2 et k est une prolongation de k-3, auquel on ajoute un complément.

1) 996-1
2) 1815-7
3) 9961-2
4) 18157-3
5) 99612-10
6) 181573-51
7) 9961210-86
8) 18157351-814
9) 996121086-995

etc...

J'espère que c'est assez clair.

 #79 - 22-11-2015 13:49:00

masab
Expert de Prise2Tete
Enigmes résolues : 44
Messages : 971

suite de nombres à destin inceetain...

Effectivement c'était facile à justifier !
On dira qu'un entier u1 est étrange de période p entier >=1 si dans la suite engendrée u1,u2,...,un,... l'écriture de u1+p est le prolongement  l'écriture de u1. Dans ce cas, en faisant la même preuve que nodgim, on en déduit que pour tout entier k>=1, l'écriture de uk+p est le prolongement  l'écriture de uk.
Tout descendant d'un entier  étrange de période p est aussi  étrange de période p.
Il y en a donc une infinité d'entiers étranges, puisque 9971 est étrange.
Tout entier périodique est étrange.

On dira qu'un entier étrange u1 est primitif s'il n'existe pas d'entier étrange u0 dont u1  soit le suivant.
Les entiers périodiques ne sont pas étranges primitifs.
Il semble qu'il n'y ait qu'un nombre fini d'entiers étranges primitifs. Je suis en train de les déterminer.

 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Dans une course, vous doublez le 42ème, en quelle position êtes-vous ?

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete