|
#1 - 10-03-2011 14:04:19
- gasole
- Elite de Prise2Tete
- Enigmes résolues : 40
- Messages : 1117
- Lieu: Toulouse
NN'en jetons plus !
On a un stock (illimité) de jetons rouges et de jetons bleus. On a une bande constituée de cases, elle aussi illimitée à droite et à gauche.
Initialement, une seule case est non-vide et contient un jeton rouge, la bande ressemble donc à ceci : [latex]\ldots\fbox{R}\ldots[/latex], les pointillés représentent des cases vides.
Le but est qu'il ne reste plus qu'un jeton bleu sur la bande. [TeX]\ldots\fbox{B}\ldots[/TeX] Pour cela, il y a des règles à suivre :
1) On peut ajouter un bleu à la suite d'un rouge s'il est en bout de bande
(ainsi on peut passer de ... RBBR... à ...RBBRB... ou à ...BRBBR...
2) On peut dupliquer la séquence, à droite (ou à gauche ce qui revient au même)
(ainsi de ...BRBBRRB..., on peut passer à ...BRBBRRBBRBBRRB...)
3) On peut transformer 3 rouges consécutifs en un bleu :
(ainsi de ...BRBRRRB..., on peut passer à ...BRBBB...)
4) On peut supprimer deux bleus consécutifs
(ainsi de ...BRBRBBR..., on peut passer à ...BRBRR...)
Est-il possible de passer de "...R..." à "...B..." preuve à l'appui ?
PS : librement adapté d'une énigme de Spoiler : [Afficher le message] D.H.
#2 - 10-03-2011 14:10:07
- kosmogol
- Banni
- Enigmes résolues : 49
- Messages : 11,928E+3
n'en hetons plus !
bbbbbbbrrrrrrrrrrrrrrrr ça me donne froid ta question
http://enigmusique.blogspot.com/
#3 - 10-03-2011 17:10:50
- gasole
- Elite de Prise2Tete
- Enigmes résolues : 40
- Messages : 1117
- Lieu: Toulouse
N'en jeton plus !
Déjà le Prix de la réponse orthogonale pour Kosmogoleri.
#4 - 10-03-2011 17:10:55
- LeSingeMalicieux
- Elite de Prise2Tete
- Enigmes résolues : 49
- Messages : 1298
- Lieu: Haute-Marne
N'en jetos plus !
Cela resemble plus ou moins à une machine de Turing, nan ? (mes souvenirs à ce sujet sont tellement lointains )
J'adore cette énigme logique, même si pour le moment je n'y trouve pas de réponse.
Avoir quatre mains, c'est plus pratique pour taper sur un clavier.
#5 - 10-03-2011 17:15:45
- Memento
- Professionnel de Prise2Tete
- Enigmes résolues : 30
- Messages : 176
'Nen jetons plus !
Edit: effacé
#6 - 10-03-2011 17:20:15
- thedoums
- Professionnel de Prise2Tete
- Enigmes résolues : 23
- Messages : 223
n'en hetons plus !
de but en blanc je dirais que ce n'est pas possible! la dernière action qui devrait nous amener au résultat final de 1 B est infaisable... si il nous reste RRR on met 1B on aura BB, de là on peut mettre un R ce qui nous donne RR... on tourne en rond!! Bref c'est IMPOSSIBLE
#7 - 10-03-2011 19:37:07
- gasole
- Elite de Prise2Tete
- Enigmes résolues : 40
- Messages : 1117
- Lieu: Toulouse
Nen jetons plus !
@Singe : ce n'est pas une machine de Turing, mais on est en plein dans les "systèmes formels"...
@tous : indice Spoiler : [Afficher le message] en effet, ça n'est pas possible, à vous de le prouver
#8 - 10-03-2011 20:38:08
- L00ping007
- Elite de Prise2Tete
- Enigmes résolues : 49
- Messages : 2010
- Lieu: Paris
n'en jeyons plus !
Ca me rappelle tellement mes cours d'info de prépa, section automates et langages reconnaissables ... Que c'est loinnnn, malheureusement
#9 - 10-03-2011 20:47:07
- gasole
- Elite de Prise2Tete
- Enigmes résolues : 40
- Messages : 1117
- Lieu: Toulouse
N'en jetons plsu !
Il "suffit" (sic) de trouver l'astuce...
#10 - 10-03-2011 21:20:56
- dylasse
- Professionnel de Prise2Tete
- Enigmes résolues : 21
- Messages : 378
N'een jetons plus !
Pour chaque étape E, on note f(E) une fonction (boolèenne) qui associe Vraie si le nombre de rouges est divisible par 3 et Faux dans le cas contraire.
f est invariante selon les 4 opérateurs : #1 : nombre de rouges invariant #2 : x 2 sur le nombre de rouges #3 : - 3 sur le nombre de rouges #4 : nombre de rouges invariant
f(...R...)=Faux f(...B...)=Vrai
Donc, on ne peut pas passer de l'état de départ ...R... à l'état ...B...
#11 - 10-03-2011 21:45:55
- gasole
- Elite de Prise2Tete
- Enigmes résolues : 40
- Messages : 1117
- Lieu: Toulouse
'en jetons plus !
+1 pour dylasse qui prouve que ça tient en quelques mots
@thedoums : une preuve ! une preuve ! une preuve !
#12 - 11-03-2011 00:45:17
- gasole
- Elite de Prise2Tete
- Enigmes résolues : 40
- Messages : 1117
- Lieu: Toulouse
N'en jetons plus !!
Promis les gars, c'est fastoche !
Allez, comme indice, un mot clé "prononcé" par Scarta il n'y a pas longtemps : Spoiler : [Afficher le message] invariant
#13 - 11-03-2011 01:15:11
- irmo322
- Professionnel de Prise2Tete
- Enigmes résolues : 36
- Messages : 203
N'en jetons plu !
Comment supprimer tous les jetons rouges?? On peut multiplier le nombre de jetons rouges par 2 ou en soustraire 3 et cela autant de fois que l'on veut et dans l'ordre que l'on veut. On remarque que: (n-3).2=(n.2)-3-3. Ça permet de se ramener au cas où on multiplie d'abord autant de fois qu'on veut par 2, puis on enlève un multiple de 3. Vu comme ça, c'est facile de voir qu'on peut pas arriver à 0 (car 3 ne divise aucune puissance de 2). Donc c'est pô possible!
#14 - 11-03-2011 01:28:05
- thedoums
- Professionnel de Prise2Tete
- Enigmes résolues : 23
- Messages : 223
N'en jetosn plus !
ok bon commencons on part de R on ajoute B ca donne RB ensuite 2 possibilité: 1) on ajoute un autre B ca donne BRB là on es obligé de doublé on ne peut rien faire d'autre ca donne BRBBRB ensuite on enlève BB du milieu ca donne BRRB on double mais ca ne sert a rien car on revient au début (BRRBBRRB ca donne BRRRRB ca donne BRB) boucle
2)on double tout de suite ca donneRBRB ou BRBR selon comment on est parti. là on ne peut que rajouter un B ca donne BRBRB. allez on double ca donne BRBRBBRBRB. De là on enlève BB au milieu ca donneBRBRRBRB.... bref par là on ne peut pas rétrécir mais que agrandir!
Voilà c'est impossible...
c'est un peu brouillon mais j'espère que ca te va?
#15 - 11-03-2011 09:11:36
- debutant1
- Professionnel de Prise2Tete
- Enigmes résolues : 0
- Messages : 116
n'en jetond plus !
Je suppose que ce n'est pas possible (après plein d'essais) car les opération dupliquent les rouges en puissance de 2 et on ne supprime que des multiples de 3.
#16 - 11-03-2011 11:03:53
- gasole
- Elite de Prise2Tete
- Enigmes résolues : 40
- Messages : 1117
- Lieu: Toulouse
n'en jetons plis !
@thedoums : d'une part tu en as oublié (au départ on peut passer de R à RR), et d'autre part ça ne constitue pas une preuve, au mieux une conviction
@irmo et debutant : yes !
#17 - 11-03-2011 11:10:11
- scarta
- Elite de Prise2Tete
- Enigmes résolues : 49
- Messages : 1970
N'en jetons lus !
Seules 2 opérations modifient le nombre X de rouges : celle qui en laisse X-3 et celle qui en laisse 2X. L'invariant est que X n'est pas un multiple de 3 : c'est le cas au début, et les deux opérations détaillées ci-dessus ne changent pas cet invariant. Conclusion : il est impossible d'arriver à un état où X = 0, X étant alors un multiple de 3.
#18 - 11-03-2011 11:19:08
- gasole
- Elite de Prise2Tete
- Enigmes résolues : 40
- Messages : 1117
- Lieu: Toulouse
N'en jeetons plus !
@scarta : +1, et les mains dans les poches
#19 - 11-03-2011 15:36:15
- thedoums
- Professionnel de Prise2Tete
- Enigmes résolues : 23
- Messages : 223
n'en hetons plus !
je suis peut etre le seul mais dans tes règles tu ne dis pas qu'on peut mettre un R! Moi j'ai suivi les règles 1) 2) 3) 4). Tu aurais du préciser pour le rouge... Dans ce cas qu'est ce qui nous empeche de faire R qui donne RR qui donne RRR qui donne B? Donc ce serait possible... Ensuite ce n'était pas une conviction moi j'aurais dit plutot une démonstration...non?
#20 - 11-03-2011 18:21:46
- gasole
- Elite de Prise2Tete
- Enigmes résolues : 40
- Messages : 1117
- Lieu: Toulouse
n'en jeyons plus !
@doums : j'ai pas dit qu'on peut mettre un R, j'ai dit qu'on peut dupliquer la séquence (règle 2), or initialement elle se compose uniquement d'un R, donc si on duplique ça donne RR, et si on re-duplique : RRRR
On discutera de l'aspect preuve vs conviction ensuite.
#21 - 11-03-2011 18:27:10
- thedoums
- Professionnel de Prise2Tete
- Enigmes résolues : 23
- Messages : 223
N'en ejtons plus !
oups autant pour moi! Sinon je voit pas comment t'apporter la preuve si une démonstration n'en est pas une... Je vais attendre sagement la correction et rester bete quand je la verrais!!
#22 - 11-03-2011 18:33:11
- gasole
- Elite de Prise2Tete
- Enigmes résolues : 40
- Messages : 1117
- Lieu: Toulouse
n'en jetons pluq !
@doums : tu dois pouvoir trouver un critère simple qui reflète ton intuition... c'est l'invariant-attitude qui t'aidera
#23 - 11-03-2011 18:37:04
- thedoums
- Professionnel de Prise2Tete
- Enigmes résolues : 23
- Messages : 223
N'een jetons plus !
et si j'ai la positive attitude ca marche? ou la bogossitude?? LOL
#24 - 11-03-2011 18:50:09
- LeSingeMalicieux
- Elite de Prise2Tete
- Enigmes résolues : 49
- Messages : 1298
- Lieu: Haute-Marne
n'eb jetons plus !
Pour atteindre le but demandé, il faut à un moment où à un autre, supprimer tous les jetons rouges de la bande.
Seule la règle 3 permet de supprimer du rouge, en l'occurence supprimer trois jetons rouges consécutifs.
Cela implique donc, à un moment où à un autre, d'avoir un nombre de jetons rouges multiple de 3.
Les règles 1 et 4 ne peuvent être utiles pour ce faire (elles ne modifient pas le nombre de jetons rouges). Restent les règles 2 et 3 pour réussir à obtenir un nombre de jetons rouges qui soit un multiple de 3.
La règle 2 a pour conséquence de doubler le nombre de jetons rouges. La règle 3 a pour effet de supprimer 3 jetons rouges.
Si on utilise la règle 2 pour arriver à un nombre de jetons rouges multiple de 3, cela signifie qu'avant de l'appliquer, le nombre de jetons rouges était déjà un multiple de 3. Elle ne nous sera donc pas utile pour ce but...
Si on utilise la règle 3 pour arriver à un nombre de jetons rouges multiple de 3 cela signifie qu'avant de l'appliquer, le nombre de jetons rouges était déjà un multiple de 3. Elle ne nous est donc également pas utile pour ce but...
Tout cela a pour conséquence de ne pas pouvoir réussir à éliminer l'ensemble des jetons rouges.
Excellente énigme gasole ! J'en veux bien d'autres du même genre Résolvables ou pas. Même si des résolvables pourraient être sympas
Avoir quatre mains, c'est plus pratique pour taper sur un clavier.
#25 - 11-03-2011 19:55:49
- gasole
- Elite de Prise2Tete
- Enigmes résolues : 40
- Messages : 1117
- Lieu: Toulouse
Nen jetons plus !
+1 pour notre simiesque collègue
@gwen: je crains que la positive-attitude soit souvent inefficace en maths, ni la méthode coué
Mots clés des moteurs de recherche
|
|