Forum dédié aux énigmes et à toutes formes de jeux de logique. | Déconnexion |
Tu n'es pas identifié sur Prise2tete : s'identifier. |
#1 - 01-05-2016 08:16:34
ombres premiers d'additionBonjour à tous.
#0 Pub#2 - 01-05-2016 11:37:23#3 - 01-05-2016 13:11:21#4 - 01-05-2016 16:08:00
nombres premiees d'additionSydre, il ne s'agit pas de la suite de Fibonacci. #5 - 01-05-2016 16:50:14
Nombres premiers da'ddition
C'est un peu volumineux, mais voici le programme nombres.py qui les génère Code:import sys N=int(sys.argv[1]) pak=set() som=set() def ok(n): global som for n0 in pak: m=n+n0 if m in som: return False for s in pak: som.add(s+n) return True k=n=0 while True: if ok(n): k+=1 print("k= %4d n= %8d"%(k,n)) pak.add(n) n+=1 if k>=N: break À lancer ainsi (du moins sous linux) : Code:python nombres.py 1000 #6 - 01-05-2016 17:22:02
nombres premiers d'adfitionJ'ai du mal comprendre ta définition alors #7 - 01-05-2016 17:32:40
nombres przmiers d'additionSydre: les 4 premiers d'addition sont 0,1,2,4. Les valeurs supplémentaires sont les sommes. #8 - 01-05-2016 17:35:23
nombres premiers d'addirionAllez, soyons généreux… Code:0 1 2 4 7 12 20 29 38 52 73 94 127 151 181 211 257 315 373 412 475 530 545 607 716 797 861 964 1059 1160 1306 1385 1434 1555 1721 1833 1933 2057 2260 2496 2698 2873 3060 3196 3331 3628 3711 3867 4139 4446 4639 5021 5064 5322 5613 6003 6273 6493 6641 6979 7275 7587 8017 8373 9071 9167 9760 10105 10489 11109 11374 11516 12101 12330 12867 13426 13923 14535 14911 15469 15904 16136 16900 17041 17822 19421 19933 20288 20996 21491 22065 22612 22659 23724 24399 24969 25360 26071 26680 27601 28018 28497 29557 30222 31877 32551 33118 33743 34342 34626 36925 37747 38267 39267 39998 41082 42198 42436 43343 44252 45424 46326 46848 47929 48621 49391 49851 53108 53384 54429 54826 55239 56868 57974 60071 60533 62213 63834 64925 65191 66550 67208 69645 72310 72927 73341 73541 76061 76304 76720 80903 82444 84693 85235 86732 87710 87954 90773 91335 91971 96507 97257 98177 99692 100484 103600 104325 106376 107898 108650 111409 114068 114692 117535 120122 120767 121799 125410 127534 128834 129926 133512 135690 138508 140895 141811 143211 148193 150031 151925 153922 155672 158289 160057 160355 164124 166684 169794 171812 172531 174766 175535 177386 180355 182564 184101 187953 191380 193770 195582 197919 198724 199408 206087 207402 208734 214116 215573 219885 222952 224713 225951 228405 230719 235655 237285 239222 242190 246343 249693 252765 254612 256308 261142 266529 267372 272133 276039 277624 280877 283129 289011 290295 293067 302169 305551 305802 308411 317253 319429 324075 325350 329885 331230 333135 333836 337958 342897 344461 351293 352268 353052 359151 364874 374184 376136 381501 384349 386972 388380 391471 392439 400923 401552 405567 405849 411083 418502 422760 423833 427695 429114 440298 440587 447682 455482 459422 463998 470054 471939 472866 479480 483217 485436 489994 501610 507580 508872 518694 523449 524678 528366 535017 537119 541418 549499 554394 555903 562779 563647 567781 579841 584336 594235 598603 602275 608153 609464 611952 612242 613442 629074 630204 634888 636332 639856 648334 656353 663706 672318 673886 678839 684361 684601 692072 702243 707027 718768 721738 729589 740183 742338 747499 750449 758741 760508 768802 774584 776149 787160 797898 804125 806584 817194 818614 825332 827602 833162 840370 845719 862033 865938 875230 878669 888718 890617 902070 906343 910215 910843 919853 929516 939825 946901 948699 963686 964533 975326 980776 982328 985869 990509 991532 993088 1000796 1036723 1046038 1051255 1054627 1057036 1058542 1066560 1067301 1085442 1090684 1100045 1109938 1117713 1125551 1127047 1142150 1153087 1160931 1171258 1177757 1180749 1184065 1194816 1211959 1216209 1218029 1223580 1244015 1248223 1252320 1269264 1276613 1279255 1301869 1310171 1318685 1324971 1328866 1338932 1344801 1346631 1356107 1369333 1370197 1370256 1382666 1398028 1405380 1412686 1423891 1434922 1441552 1444128 1446783 1460452 1466228 1470297 1487302 1491881 1502457 1522778 1533531 1535815 1555065 1566426 1582487 1586273 1588260 1613264 1615370 1622568 1625549 1629793 1633916 1651920 1684782 1688270 1690132 1698000 1704193 1710088 1716081 1721654 1745050 1748726 1749132 1755480 1784439 1789544 1797528 1803147 1808508 1836595 1843411 1865293 1879181 1881227 1882876 1899548 1921113 1934508 1946585 1953389 1955054 1972112 1983519 1995289 2014876 2022543 2023681 2040388 2045104 2048130 2064244 2095085 2101385 2105500 2112651 2126804 2143878 2157540 2165221 2168023 2177438 2180121 2200362 2211294 2214962 2220503 2261850 2268115 2269626 2279532 2286003 2305416 2310092 2318655 2323896 2347059 2349530 2352318 2368465 2372822 2377096 2407120 2432086 2443959 2448514 2451301 2466728 2507296 2521278 2522534 2529232 2550557 2554581 2570670 2574186 2604930 2610089 2623331 2624120 2678698 2686189 2690106 2698395 2721725 2739060 2742232 2753394 2757592 2762967 2785009 2793924 2818703 2824035 2845761 2855130 2864493 2885976 2887149 2910421 2921333 2938440 2945904 2964728 2989736 2997651 2998916 3014908 3017647 3051425 3074564 3098970 3101427 3113980 3127674 3131203 3145772 3150508 3169162 3171702 3197080 3209370 3222467 3244639 3256225 3293282 3295734 3302647 3341558 3355364 3359616 3363630 3376222 3398597 3410229 3419110 3432253 3448499 3481777 3509776 3538842 3552493 3557445 3587885 3601039 3628591 3642351 3646587 3651618 3659674 3670378 3696616 3698256 3742411 3747344 3770683 3804390 3806665 3838188 3857803 3864213 3872959 3895323 3899658 3933468 3969044 3981279 3992967 4002661 4021115 4050531 4054557 4059780 4083605 4106375 4113360 4131878 4136525 4139401 4145947 4180537 4187882 4211415 4252315 4256027 4268043 4277910 4300825 4336894 4340335 4407276 4414258 4450739 4484471 4501412 4504154 4522730 4536263 4546710 4578541 4604845 4615042 4622273 4633124 4641030 4648630 4668026 4674720 4704885 4745891 4788174 4805119 4809329 4826818 4830889 4861662 4897554 4912228 4914121 4917273 4930941 4950594 4989274 5028713 5063835 5092750 5100810 5138598 5146212 5169489 5176656 5182289 5185510 5191696 5192061 5208143 5220329 5242022 5308765 5344582 5355962 5360452 5371063 5409045 5453993 5489250 5499581 5510250 5526975 5545218 5582611 5584751 5598750 5605488 5610180 5619885 5679963 5701902 5765712 5806748 5822374 5852741 5864530 5867046 5881798 5909663 5915321 5930458 5994504 6001896 6026262 6038487 6053748 6092889 6104366 6112609 6134218 6183175 6190544 6191595 6197712 6217747 6225861 6346384 6362790 6377955 6409358 6443735 6480984 6486269 6516643 6534320 6545481 6562294 6583840 6614393 6648749 6675193 6681290 6691444 6743452 6766743 6819105 6823578 6865807 6880431 6899149 6923707 6942243 6964345 7001148 7014530 7031996 7044762 7046459 7107335 7124224 7148280 7179250 7257373 7263359 7294864 7309784 7372937 7387910 7398845 7411142 7420083 7436721 7463667 7473302 7479209 7507361 7510944 7536617 7585108 7585551 7620998 7625795 7682002 7694416 7779304 7815208 7856689 7874700 7896514 7962900 7997387 8005949 8010600 8032104 8070882 8114086 8122021 8128586 8138970 8178553 8217763 8223531 8295379 8341493 8349393 8370500 8403355 8413339 8464355 8535076 8573069 8588685 8610016 8612551 8641913 8666288 8691731 8715748 8740335 8814085 8840089 8851958 8864092 8872575 8913784 8960660 8966738 8974680 9021171 9061321 9105434 9123927 9130531 9131860 9184229 9194993 9199411 9239672 9245745 9306411 9346328 9395366 9412083 9456824 9464597 9486108 9496560 9539041 9571703 9637131 9660920 9675040 9700045 9726740 9746139 9773535 9792188 9857882 9958606 10007742 10076045 10098788 10104095 10127323 10171333 10195507 10209075 10221337 10254151 10259843 10306339 10313185 10315233 10352150 10427585 10475212 10519620 10525263 10528118 10553900 10564109 10582087 10585364 10696973 10749358 10774152 10785637 10800433 10867769 10895837 10920540 10983268 11021967 11114331 11116035 11132034 11164228 11175797 11187371 11248297 11272234 11426231 11478526 11481798 11499270 11510769 11541224 11551350 11596378 11606314 11675960 11754496 11767789 11773293 11786150 11805210 11844667 11866556 11904570 11947753 11952580 12090099 12118289 12139059 12212421 12242103 12265425 12377924 12405937 12433587 12457247 12457942 12497694 12561376 12566064 12578475 12631340 12643874 12711175 12730630 12748229 12787757 12818963 12820836 12893729 12905855 12925882 12990038 13049793 13074409 13102075 13190892 13191077 13202957 13234403 13250175 13338016 13385128 13406699 13426256 13468825 13500304 13525687 13534194 13588345 13645045 13671111 13697624 13731729 13756133 13762947 13789145 13836398 13873009 13946359 13951622 #9 - 01-05-2016 17:36:44#10 - 01-05-2016 17:39:55#11 - 01-05-2016 17:45:33
Nombres premiers d'dditionEnigmatus: Jusqu'à 716 (25ème pa) c'est conforme avec ce que j'ai fait à la main. Il y a donc une quasi-certitude de la justesse de ton résultat. #12 - 01-05-2016 18:39:56
nombres premiers d'addituonPourrais tu clarifier ta definition? Great minds discuss ideas; Average minds discuss events; Small minds discuss people. -Eleanor Roosevelt #13 - 01-05-2016 18:53:29#14 - 01-05-2016 20:18:21
Nombre premiers d'addition1ere tentative, je trouve ceci: Great minds discuss ideas; Average minds discuss events; Small minds discuss people. -Eleanor Roosevelt #15 - 01-05-2016 20:21:38
nimbres premiers d'additionEt il s'agirait de la séquence: A010672 sur OEIS., et la réponse pour le 1000eme element est : 13951622. Great minds discuss ideas; Average minds discuss events; Small minds discuss people. -Eleanor Roosevelt #16 - 02-05-2016 00:28:49
nombres premiers d'additoon@nodgim : Code:k= 1000 n= 13951622 Tcumu= 140.260 k= 2000 n= 96293106 Tcumu= 1747.451 k= 3000 n= 303322871 Tcumu= 8393.920 k= 4000 n= 688238145 Tcumu= 25036.643 #17 - 02-05-2016 08:01:24
nombreq premiers d'additionDhrm, c'est bon, bravo ! #18 - 02-05-2016 10:18:57#19 - 02-05-2016 10:33:06
nombres premirrs d'additionVoici les 1000 premiers nombres premiers d'addition : Code:[[1, 0], [2, 1], [3, 2], [4, 4], [5, 7], [6, 12], [7, 20], [8, 29], [9, 38], [10, 52], [11, 73], [12, 94], [13, 127], [14, 151], [15, 181], [16, 211], [17, 257], [18, 315], [19, 373], [20, 412], [21, 475], [22, 530], [23, 545], [24, 607], [25, 716], [26, 797], [27, 861], [28, 964], [29, 1059], [30, 1160], [31, 1306], [32, 1385], [33, 1434], [34, 1555], [35, 1721], [36, 1833], [37, 1933], [38, 2057], [39, 2260], [40, 2496], [41, 2698], [42, 2873], [43, 3060], [44, 3196], [45, 3331], [46, 3628], [47, 3711], [48, 3867], [49, 4139], [50, 4446], [51, 4639], [52, 5021], [53, 5064], [54, 5322], [55, 5613], [56, 6003], [57, 6273], [58, 6493], [59, 6641], [60, 6979], [61, 7275], [62, 7587], [63, 8017], [64, 8373], [65, 9071], [66, 9167], [67, 9760], [68, 10105], [69, 10489], [70, 11109], [71, 11374], [72, 11516], [73, 12101], [74, 12330], [75, 12867], [76, 13426], [77, 13923], [78, 14535], [79, 14911], [80, 15469], [81, 15904], [82, 16136], [83, 16900], [84, 17041], [85, 17822], [86, 19421], [87, 19933], [88, 20288], [89, 20996], [90, 21491], [91, 22065], [92, 22612], [93, 22659], [94, 23724], [95, 24399], [96, 24969], [97, 25360], [98, 26071], [99, 26680], [100, 27601], [101, 28018], [102, 28497], [103, 29557], [104, 30222], [105, 31877], [106, 32551], [107, 33118], [108, 33743], [109, 34342], [110, 34626], [111, 36925], [112, 37747], [113, 38267], [114, 39267], [115, 39998], [116, 41082], [117, 42198], [118, 42436], [119, 43343], [120, 44252], [121, 45424], [122, 46326], [123, 46848], [124, 47929], [125, 48621], [126, 49391], [127, 49851], [128, 53108], [129, 53384], [130, 54429], [131, 54826], [132, 55239], [133, 56868], [134, 57974], [135, 60071], [136, 60533], [137, 62213], [138, 63834], [139, 64925], [140, 65191], [141, 66550], [142, 67208], [143, 69645], [144, 72310], [145, 72927], [146, 73341], [147, 73541], [148, 76061], [149, 76304], [150, 76720], [151, 80903], [152, 82444], [153, 84693], [154, 85235], [155, 86732], [156, 87710], [157, 87954], [158, 90773], [159, 91335], [160, 91971], [161, 96507], [162, 97257], [163, 98177], [164, 99692], [165, 100484], [166, 103600], [167, 104325], [168, 106376], [169, 107898], [170, 108650], [171, 111409], [172, 114068], [173, 114692], [174, 117535], [175, 120122], [176, 120767], [177, 121799], [178, 125410], [179, 127534], [180, 128834], [181, 129926], [182, 133512], [183, 135690], [184, 138508], [185, 140895], [186, 141811], [187, 143211], [188, 148193], [189, 150031], [190, 151925], [191, 153922], [192, 155672], [193, 158289], [194, 160057], [195, 160355], [196, 164124], [197, 166684], [198, 169794], [199, 171812], [200, 172531], [201, 174766], [202, 175535], [203, 177386], [204, 180355], [205, 182564], [206, 184101], [207, 187953], [208, 191380], [209, 193770], [210, 195582], [211, 197919], [212, 198724], [213, 199408], [214, 206087], [215, 207402], [216, 208734], [217, 214116], [218, 215573], [219, 219885], [220, 222952], [221, 224713], [222, 225951], [223, 228405], [224, 230719], [225, 235655], [226, 237285], [227, 239222], [228, 242190], [229, 246343], [230, 249693], [231, 252765], [232, 254612], [233, 256308], [234, 261142], [235, 266529], [236, 267372], [237, 272133], [238, 276039], [239, 277624], [240, 280877], [241, 283129], [242, 289011], [243, 290295], [244, 293067], [245, 302169], [246, 305551], [247, 305802], [248, 308411], [249, 317253], [250, 319429], [251, 324075], [252, 325350], [253, 329885], [254, 331230], [255, 333135], [256, 333836], [257, 337958], [258, 342897], [259, 344461], [260, 351293], [261, 352268], [262, 353052], [263, 359151], [264, 364874], [265, 374184], [266, 376136], [267, 381501], [268, 384349], [269, 386972], [270, 388380], [271, 391471], [272, 392439], [273, 400923], [274, 401552], [275, 405567], [276, 405849], [277, 411083], [278, 418502], [279, 422760], [280, 423833], [281, 427695], [282, 429114], [283, 440298], [284, 440587], [285, 447682], [286, 455482], [287, 459422], [288, 463998], [289, 470054], [290, 471939], [291, 472866], [292, 479480], [293, 483217], [294, 485436], [295, 489994], [296, 501610], [297, 507580], [298, 508872], [299, 518694], [300, 523449], [301, 524678], [302, 528366], [303, 535017], [304, 537119], [305, 541418], [306, 549499], [307, 554394], [308, 555903], [309, 562779], [310, 563647], [311, 567781], [312, 579841], [313, 584336], [314, 594235], [315, 598603], [316, 602275], [317, 608153], [318, 609464], [319, 611952], [320, 612242], [321, 613442], [322, 629074], [323, 630204], [324, 634888], [325, 636332], [326, 639856], [327, 648334], [328, 656353], [329, 663706], [330, 672318], [331, 673886], [332, 678839], [333, 684361], [334, 684601], [335, 692072], [336, 702243], [337, 707027], [338, 718768], [339, 721738], [340, 729589], [341, 740183], [342, 742338], [343, 747499], [344, 750449], [345, 758741], [346, 760508], [347, 768802], [348, 774584], [349, 776149], [350, 787160], [351, 797898], [352, 804125], [353, 806584], [354, 817194], [355, 818614], [356, 825332], [357, 827602], [358, 833162], [359, 840370], [360, 845719], [361, 862033], [362, 865938], [363, 875230], [364, 878669], [365, 888718], [366, 890617], [367, 902070], [368, 906343], [369, 910215], [370, 910843], [371, 919853], [372, 929516], [373, 939825], [374, 946901], [375, 948699], [376, 963686], [377, 964533], [378, 975326], [379, 980776], [380, 982328], [381, 985869], [382, 990509], [383, 991532], [384, 993088], [385, 1000796], [386, 1036723], [387, 1046038], [388, 1051255], [389, 1054627], [390, 1057036], [391, 1058542], [392, 1066560], [393, 1067301], [394, 1085442], [395, 1090684], [396, 1100045], [397, 1109938], [398, 1117713], [399, 1125551], [400, 1127047], [401, 1142150], [402, 1153087], [403, 1160931], [404, 1171258], [405, 1177757], [406, 1180749], [407, 1184065], [408, 1194816], [409, 1211959], [410, 1216209], [411, 1218029], [412, 1223580], [413, 1244015], [414, 1248223], [415, 1252320], [416, 1269264], [417, 1276613], [418, 1279255], [419, 1301869], [420, 1310171], [421, 1318685], [422, 1324971], [423, 1328866], [424, 1338932], [425, 1344801], [426, 1346631], [427, 1356107], [428, 1369333], [429, 1370197], [430, 1370256], [431, 1382666], [432, 1398028], [433, 1405380], [434, 1412686], [435, 1423891], [436, 1434922], [437, 1441552], [438, 1444128], [439, 1446783], [440, 1460452], [441, 1466228], [442, 1470297], [443, 1487302], [444, 1491881], [445, 1502457], [446, 1522778], [447, 1533531], [448, 1535815], [449, 1555065], [450, 1566426], [451, 1582487], [452, 1586273], [453, 1588260], [454, 1613264], [455, 1615370], [456, 1622568], [457, 1625549], [458, 1629793], [459, 1633916], [460, 1651920], [461, 1684782], [462, 1688270], [463, 1690132], [464, 1698000], [465, 1704193], [466, 1710088], [467, 1716081], [468, 1721654], [469, 1745050], [470, 1748726], [471, 1749132], [472, 1755480], [473, 1784439], [474, 1789544], [475, 1797528], [476, 1803147], [477, 1808508], [478, 1836595], [479, 1843411], [480, 1865293], [481, 1879181], [482, 1881227], [483, 1882876], [484, 1899548], [485, 1921113], [486, 1934508], [487, 1946585], [488, 1953389], [489, 1955054], [490, 1972112], [491, 1983519], [492, 1995289], [493, 2014876], [494, 2022543], [495, 2023681], [496, 2040388], [497, 2045104], [498, 2048130], [499, 2064244], [500, 2095085], [501, 2101385], [502, 2105500], [503, 2112651], [504, 2126804], [505, 2143878], [506, 2157540], [507, 2165221], [508, 2168023], [509, 2177438], [510, 2180121], [511, 2200362], [512, 2211294], [513, 2214962], [514, 2220503], [515, 2261850], [516, 2268115], [517, 2269626], [518, 2279532], [519, 2286003], [520, 2305416], [521, 2310092], [522, 2318655], [523, 2323896], [524, 2347059], [525, 2349530], [526, 2352318], [527, 2368465], [528, 2372822], [529, 2377096], [530, 2407120], [531, 2432086], [532, 2443959], [533, 2448514], [534, 2451301], [535, 2466728], [536, 2507296], [537, 2521278], [538, 2522534], [539, 2529232], [540, 2550557], [541, 2554581], [542, 2570670], [543, 2574186], [544, 2604930], [545, 2610089], [546, 2623331], [547, 2624120], [548, 2678698], [549, 2686189], [550, 2690106], [551, 2698395], [552, 2721725], [553, 2739060], [554, 2742232], [555, 2753394], [556, 2757592], [557, 2762967], [558, 2785009], [559, 2793924], [560, 2818703], [561, 2824035], [562, 2845761], [563, 2855130], [564, 2864493], [565, 2885976], [566, 2887149], [567, 2910421], [568, 2921333], [569, 2938440], [570, 2945904], [571, 2964728], [572, 2989736], [573, 2997651], [574, 2998916], [575, 3014908], [576, 3017647], [577, 3051425], [578, 3074564], [579, 3098970], [580, 3101427], [581, 3113980], [582, 3127674], [583, 3131203], [584, 3145772], [585, 3150508], [586, 3169162], [587, 3171702], [588, 3197080], [589, 3209370], [590, 3222467], [591, 3244639], [592, 3256225], [593, 3293282], [594, 3295734], [595, 3302647], [596, 3341558], [597, 3355364], [598, 3359616], [599, 3363630], [600, 3376222], [601, 3398597], [602, 3410229], [603, 3419110], [604, 3432253], [605, 3448499], [606, 3481777], [607, 3509776], [608, 3538842], [609, 3552493], [610, 3557445], [611, 3587885], [612, 3601039], [613, 3628591], [614, 3642351], [615, 3646587], [616, 3651618], [617, 3659674], [618, 3670378], [619, 3696616], [620, 3698256], [621, 3742411], [622, 3747344], [623, 3770683], [624, 3804390], [625, 3806665], [626, 3838188], [627, 3857803], [628, 3864213], [629, 3872959], [630, 3895323], [631, 3899658], [632, 3933468], [633, 3969044], [634, 3981279], [635, 3992967], [636, 4002661], [637, 4021115], [638, 4050531], [639, 4054557], [640, 4059780], [641, 4083605], [642, 4106375], [643, 4113360], [644, 4131878], [645, 4136525], [646, 4139401], [647, 4145947], [648, 4180537], [649, 4187882], [650, 4211415], [651, 4252315], [652, 4256027], [653, 4268043], [654, 4277910], [655, 4300825], [656, 4336894], [657, 4340335], [658, 4407276], [659, 4414258], [660, 4450739], [661, 4484471], [662, 4501412], [663, 4504154], [664, 4522730], [665, 4536263], [666, 4546710], [667, 4578541], [668, 4604845], [669, 4615042], [670, 4622273], [671, 4633124], [672, 4641030], [673, 4648630], [674, 4668026], [675, 4674720], [676, 4704885], [677, 4745891], [678, 4788174], [679, 4805119], [680, 4809329], [681, 4826818], [682, 4830889], [683, 4861662], [684, 4897554], [685, 4912228], [686, 4914121], [687, 4917273], [688, 4930941], [689, 4950594], [690, 4989274], [691, 5028713], [692, 5063835], [693, 5092750], [694, 5100810], [695, 5138598], [696, 5146212], [697, 5169489], [698, 5176656], [699, 5182289], [700, 5185510], [701, 5191696], [702, 5192061], [703, 5208143], [704, 5220329], [705, 5242022], [706, 5308765], [707, 5344582], [708, 5355962], [709, 5360452], [710, 5371063], [711, 5409045], [712, 5453993], [713, 5489250], [714, 5499581], [715, 5510250], [716, 5526975], [717, 5545218], [718, 5582611], [719, 5584751], [720, 5598750], [721, 5605488], [722, 5610180], [723, 5619885], [724, 5679963], [725, 5701902], [726, 5765712], [727, 5806748], [728, 5822374], [729, 5852741], [730, 5864530], [731, 5867046], [732, 5881798], [733, 5909663], [734, 5915321], [735, 5930458], [736, 5994504], [737, 6001896], [738, 6026262], [739, 6038487], [740, 6053748], [741, 6092889], [742, 6104366], [743, 6112609], [744, 6134218], [745, 6183175], [746, 6190544], [747, 6191595], [748, 6197712], [749, 6217747], [750, 6225861], [751, 6346384], [752, 6362790], [753, 6377955], [754, 6409358], [755, 6443735], [756, 6480984], [757, 6486269], [758, 6516643], [759, 6534320], [760, 6545481], [761, 6562294], [762, 6583840], [763, 6614393], [764, 6648749], [765, 6675193], [766, 6681290], [767, 6691444], [768, 6743452], [769, 6766743], [770, 6819105], [771, 6823578], [772, 6865807], [773, 6880431], [774, 6899149], [775, 6923707], [776, 6942243], [777, 6964345], [778, 7001148], [779, 7014530], [780, 7031996], [781, 7044762], [782, 7046459], [783, 7107335], [784, 7124224], [785, 7148280], [786, 7179250], [787, 7257373], [788, 7263359], [789, 7294864], [790, 7309784], [791, 7372937], [792, 7387910], [793, 7398845], [794, 7411142], [795, 7420083], [796, 7436721], [797, 7463667], [798, 7473302], [799, 7479209], [800, 7507361], [801, 7510944], [802, 7536617], [803, 7585108], [804, 7585551], [805, 7620998], [806, 7625795], [807, 7682002], [808, 7694416], [809, 7779304], [810, 7815208], [811, 7856689], [812, 7874700], [813, 7896514], [814, 7962900], [815, 7997387], [816, 8005949], [817, 8010600], [818, 8032104], [819, 8070882], [820, 8114086], [821, 8122021], [822, 8128586], [823, 8138970], [824, 8178553], [825, 8217763], [826, 8223531], [827, 8295379], [828, 8341493], [829, 8349393], [830, 8370500], [831, 8403355], [832, 8413339], [833, 8464355], [834, 8535076], [835, 8573069], [836, 8588685], [837, 8610016], [838, 8612551], [839, 8641913], [840, 8666288], [841, 8691731], [842, 8715748], [843, 8740335], [844, 8814085], [845, 8840089], [846, 8851958], [847, 8864092], [848, 8872575], [849, 8913784], [850, 8960660], [851, 8966738], [852, 8974680], [853, 9021171], [854, 9061321], [855, 9105434], [856, 9123927], [857, 9130531], [858, 9131860], [859, 9184229], [860, 9194993], [861, 9199411], [862, 9239672], [863, 9245745], [864, 9306411], [865, 9346328], [866, 9395366], [867, 9412083], [868, 9456824], [869, 9464597], [870, 9486108], [871, 9496560], [872, 9539041], [873, 9571703], [874, 9637131], [875, 9660920], [876, 9675040], [877, 9700045], [878, 9726740], [879, 9746139], [880, 9773535], [881, 9792188], [882, 9857882], [883, 9958606], [884, 10007742], [885, 10076045], [886, 10098788], [887, 10104095], [888, 10127323], [889, 10171333], [890, 10195507], [891, 10209075], [892, 10221337], [893, 10254151], [894, 10259843], [895, 10306339], [896, 10313185], [897, 10315233], [898, 10352150], [899, 10427585], [900, 10475212], [901, 10519620], [902, 10525263], [903, 10528118], [904, 10553900], [905, 10564109], [906, 10582087], [907, 10585364], [908, 10696973], [909, 10749358], [910, 10774152], [911, 10785637], [912, 10800433], [913, 10867769], [914, 10895837], [915, 10920540], [916, 10983268], [917, 11021967], [918, 11114331], [919, 11116035], [920, 11132034], [921, 11164228], [922, 11175797], [923, 11187371], [924, 11248297], [925, 11272234], [926, 11426231], [927, 11478526], [928, 11481798], [929, 11499270], [930, 11510769], [931, 11541224], [932, 11551350], [933, 11596378], [934, 11606314], [935, 11675960], [936, 11754496], [937, 11767789], [938, 11773293], [939, 11786150], [940, 11805210], [941, 11844667], [942, 11866556], [943, 11904570], [944, 11947753], [945, 11952580], [946, 12090099], [947, 12118289], [948, 12139059], [949, 12212421], [950, 12242103], [951, 12265425], [952, 12377924], [953, 12405937], [954, 12433587], [955, 12457247], [956, 12457942], [957, 12497694], [958, 12561376], [959, 12566064], [960, 12578475], [961, 12631340], [962, 12643874], [963, 12711175], [964, 12730630], [965, 12748229], [966, 12787757], [967, 12818963], [968, 12820836], [969, 12893729], [970, 12905855], [971, 12925882], [972, 12990038], [973, 13049793], [974, 13074409], [975, 13102075], [976, 13190892], [977, 13191077], [978, 13202957], [979, 13234403], [980, 13250175], [981, 13338016], [982, 13385128], [983, 13406699], [984, 13426256], [985, 13468825], [986, 13500304], [987, 13525687], [988, 13534194], [989, 13588345], [990, 13645045], [991, 13671111], [992, 13697624], [993, 13731729], [994, 13756133], [995, 13762947], [996, 13789145], [997, 13836398], [998, 13873009], [999, 13946359], [1000, 13951622]] #20 - 02-05-2016 12:10:19
nombres premiers d'additiobMasab, c'est bon également bravo ! #21 - 02-05-2016 20:01:04
Nombbres premiers d'additionAttention Masab, il doit y avoir une erreur d'interprétation. #22 - 02-05-2016 20:20:22#23 - 03-05-2016 00:06:33
Nombres premeirs d'additionQuestion rapidité, c'est peu etre du au fait que mon programme est écrit pour aller beaucoup plus loin. Je n'utilise qu'un seul bit par nombre, et de ce fait ca prend plus de temps à le tester et changer d'etat. Mais ca me premettrait de tester les nombres jusqu'a 8.000.000.000. Great minds discuss ideas; Average minds discuss events; Small minds discuss people. -Eleanor Roosevelt #24 - 03-05-2016 14:25:09#25 - 03-05-2016 15:03:34
Nombres premiers d'additioon13951622, trouvé avec 7 lignes de code, que voila Code:int target = 1000, newPaIndex = 0, index = 0, currentPa = 0; bool[] sums = new bool[100000000]; int[] paList = new int[target]; for (; newPaIndex < target; currentPa++) { for (index = 0; index < newPaIndex && !sums[currentPa + paList[index]]; index++) ; if (index != newPaIndex) continue; for (index = 0; index < newPaIndex; index++) sums[currentPa + paList[index]] = true; paList[newPaIndex++] = currentPa; } J'ai aussi une autre version du code, qui utilise un crible, environ 15% plus rapide mais moins concise (et puis le gain commence à devenir significatif à partir du 2000ème) Réponse rapideSujets similaires
Mots clés des moteurs de recherche
|
|||||||||||||||||||||||||||||||||||||
Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact |