Forum dédié aux énigmes et à toutes formes de jeux de logique. | Déconnexion |
Tu n'es pas identifié sur Prise2tete : s'identifier. |
#26 - 30-11-2015 22:14:54
nombre ubiversLeur démonstration s'arrête avec le [latex]\omega[/latex] on est d'accord? "L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline #0 Pub#27 - 30-11-2015 22:38:47
nombte universC'est surement proche mais je n'ai pas vraiment lu la leur, affolé par tant de formalisme. J'ai juste prolongé l'idée que j'exposais avant... En tout cas mon exposé est plus court... et ma conclusions sur les carrés, cubes et sympa, non ? #28 - 30-11-2015 22:53:51#29 - 30-11-2015 23:20:02#30 - 30-11-2015 23:27:12#31 - 01-12-2015 09:54:21
Nombre univrsBon, pour la question du nombre univers avec les premiers, la seule formule d'encadrement n(ln n + ln ln n - 1) < pn < n(ln n + ln ln n) suffit. Si on a k chiffres à préserver, il suffit de multiplier par suffisamment de zéros tel que ln n -1 >= 10* ( le nombre de k chiffres), ce qui est toujours possible. Et donc ln n >10*(nombre de k chiffres)+1, préserve le nombre de k chiffres. Réponse rapideSujets similaires
|
||||||||||||||||||||||||||||||||
Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact |