Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #1 - 19-02-2016 10:27:27

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

gâtrau 121

Bonjour à tous .

Tout le monde connait le tangram smile

Mon pâtissier cherche à former avec ces pièces un gâteau carré percé d’un trou carré , centré et parallèle aux bords du gâteau :

http://www.prise2tete.fr/upload/Vasimolo-gateau121.png

C’est possible ce truc ?

Amusez-vous bien smile

Vasimolo

  • |
  • Répondre

#0 Pub

 #2 - 19-02-2016 10:37:55

halloduda
Professionnel de Prise2Tete
Enigmes résolues : 24
Messages : 495
Lieu: Ardèche

gâteay 121

EDIT
Unité : le gâteau initial fait 4x4.

Avec la même orientation, le gâteau - d'aire 16 - serait 5x5 avec un trou 3x3 centré. On ne peut pas loger les grands triangles.

Avec une orientation à 45°, on fait un carré [latex]3\sqrt 2[/latex]x [latex]3\sqrt 2[/latex] avec un trou de [latex]\sqrt 2[/latex]x[latex]\sqrt 2[/latex] au centre. L'aire couverte est alors 18-2 = 16 comme au départ.

Il ne reste plus qu'à voir si on peut placer les pièces et comment.

Re EDIT
On ne peut pas, les deux grands triangles ont leurs angles droits diagonalement opposés, il n'y a pas place pour le carré.

 #3 - 19-02-2016 10:41:11

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

Gâteeau 121

@Halloduda : il faut que tu précises tes unités et à priori le petit carré peut prendre une taille aussi petite qu'on le souhaite .

Vasimolo

 #4 - 19-02-2016 10:52:40

portugal
Professionnel de Prise2Tete
Enigmes résolues : 22
Messages : 382

gâteai 121

Je comprend pas le sujet : quel découpage est imposé ?

 #5 - 19-02-2016 10:59:02

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

fâteau 121

@Portugal : Tu ne connais pas le tangram ? On prend les pièces du jeu ( figure de gauche ) et on essaie de former le carré troué ( à droite ) . Le principe du jeu est qu'on donne uniquement la silhouette de l'objet à trouver sans sa taille ni le détail des pièces qui sont à découvrir .

Vasimolo

 #6 - 19-02-2016 11:24:54

portugal
Professionnel de Prise2Tete
Enigmes résolues : 22
Messages : 382

Gâteu 121

Ca voudrait dire pour que la surface corresponde que l'on voudrait créer un carré troué un peu plus grand que le carré de base ?

Sur ton dessin ils sont de meme taille ce qui est étrange d'un point de vue surface, non ?

 #7 - 19-02-2016 11:25:46

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

gâtezu 121

Oui bien sûr smile

Vasimolo

 #8 - 19-02-2016 11:33:24

portugal
Professionnel de Prise2Tete
Enigmes résolues : 22
Messages : 382

Gâteaau 121

ok compris merci... ;=)

une justification pour le cas ou ca ne serait pas possible :

Il y a 7 pieces et le carré du milieu à 4 sommets dont aucune pièce ne peut "ajuster un sommets". Il faut de plus aller chercher les 4 angles du grand carré donc ca va commencer à être difficile.

 #9 - 19-02-2016 11:53:02

nobodydy
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 1677

Gââteau 121

Salut

Je n'ai pas mieux pour le moment qu'un gâteau en 3D lolwink
http://www.prise2tete.fr/upload/nobodydy-Vasimolo-gateau-121-bis.jpg
http://www.prise2tete.fr/upload/nobodydy-vasimolo-gateau-121-ter.jpg




EDIT :
OH Zut !!

Après quelques recherches
Il "semble" que cela soit impossible !!

Je suis déçu, j'aurai tellement aimé l'inverse....

 #10 - 19-02-2016 12:00:55

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

Gâteau 1221

@Portugal :En effet ça semble difficile mais ceux qui s'amuse avec le tangram savent que certaines silhouettes peuvent résister très longtemps avant de révéler leur secret .

En bref , si c'est possible on illustre , si ça ne l'est pas on justifie smile

@Nobodydy : La 3D te trouble la vue lollol

Vasimolo

 #11 - 19-02-2016 17:26:26

Ebichu
Expert de Prise2Tete
Enigmes résolues : 49
Messages : 888

Gâteu 121

Les différents côtés des pièces du Tangram ont des longueurs appartenant à l'ensemble { 1 ; 1/2 ; racine(2)/2 ; racine(2)/4 }.

Recherchons les dimensions possibles pour le côté d'un carré percé vérifiant le problème. Le côté est strictement supérieur à 1, et il est somme d'éléments de l'ensemble ci-dessus, puisqu'il faut accoler des pièces du Tangram le long de ce côté.

La première valeur possible est 3*racine(2)/4 soit environ 1,0607 (tiens, ça me rappelle le cube du Prince Rupert). En ce cas, le côté du trou doit faire racine(2)/4, pour que l'aire du carré troué fasse 1. Quelques essais montrent cependant que les pièces ne peuvent s'ajuster pour former ce carré troué : on commence par placer les grands triangles qui sont forcément dans deux coins opposés du carré, puis on voit rapidement qu'on ne peut placer les pièces restantes (si on s'autorisait à couper en deux le carré, ou le parallélogramme, ou le losange, ce serait possible cependant, c'est frustrant).

La deuxième valeur possible est (1+racine(2))/2 soit environ 1,207. Dans ce cas, le côté du trou mesure environ 0,676. Et alors, les deux grands triangles sont trop grands pour rentrer dans le carré troué, ils débordent...

Comme le même phénomène se produit pour les valeurs plus grandes, il est impossible de fabriquer un carré troué avec le Tangram.

 #12 - 19-02-2016 18:43:11

gwen27
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 5,996E+3

gâtezu 121

Les longueurs sont traduisible par x+y rac(2) en alignant les pièces, que ce soit pour le tour ou le carré central.

On a donc (a+b rac(2))^2 = 16 avec pour unité un petit triangle.

Seule solution : a=4, b=0
Autrement dit, c'est impossible, sauf si le carré central a une aire nulle.

Un lien très complet sur le sujet, même si je n'ai pas lu les 250 pages...
http://mathadomicile.fr/Puzzles/evoluti … olutif.pdf

C'est possible avec l'ancètre du tangram (page 159)

 #13 - 19-02-2016 23:06:13

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

gâreau 121

@Ebichu : c'est convainquant , existe-t-il un argument plus expéditif pour le premier cas ?
@Gwen : magnifique référence que je ne connaissais pas smile

Vasimolo

PS : un petit supplément pour ceux qui ont fini , comment transformer légèrement le découpage du tangram pour rendre la réalisation plus aisée smile

 #14 - 20-02-2016 08:59:23

golgot59
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1494
Lieu: Coutiches

gâteay 121

Les longueurs des côtés des pièces mesurent (environ, et à un coefficient près) :
Petits triangles et parallélogramme : 1 et 1,4
carré : 1
Grands triangles : 2 et 2,8
Triangle moyen : 1,4 et 2

Le carré d'origine a pour côté 2,8. Pour faire le carré troué, il faut augmenter légèrement la longueur "extérieure" du carré.

Le minimum atteignable avec les pièces est 3, mais pour l'obtenir il nous faut 4 côtés de longueur 3, or on a seulement 4 fois 1 et 3 fois 2, ce n'est pas suffisant.

Ensuite on peut chercher à faire 3,4 : 1,4+2 ; mais cette fois-ci, l'assemblage ne permet pas d'obtenir 4 bords sans point "d'épaisseur nulle" (endroits où 2 bords à angle saillant en contact).

Idem pour la suite. C'est donc impossible.

 #15 - 20-02-2016 19:05:59

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

Gâteua 121

Pour couper court aux raisonnements un peu trop simples smile

Un petit exemple ou j'ai remplacé le carré du tangram par un parallélogramme de même aire :

http://www.prise2tete.fr/upload/Vasimolo-121exemple.png

Amusez-vous bien smile

Vasimolo

 #16 - 20-02-2016 21:25:07

BlaiseP
Habitué de Prise2Tete
Enigmes résolues : 1
Messages : 31

Gâtaeu 121

Tu n'es pas prêt de manger ton gâteau …

Inventaire des pièces du tangramme avec le carré comme unité :

2 grands triangles surface 2 de côté 2, hypoténuse 2sqr(2), notés Ts2
1 moyen triangle surface 1 de coté sqr(2), hypoténuse 2, noté Ts1
2 petit triangles surface 1/2 de côté 1, hypoténuse sqr(2) notés Ts1/2
1 carré surface 1 de côté 1 noté Cs1
1 parallélogramme surface 1 de coté 1 et hauteur 1 noté Ps1

surface disponible  8

Notons que la plus petite longueur disponible est 1. Le côté du gâteau est soit entier, soit un multiple entier de sqr(2), de sorte que la surface gâteau + trou est nécessairement entière : soit un carré, soit le double d'un carré.

Supposons que le trou soit de surface 1.
la surface totale est 9, le côté est 3

on doit placer les Ts2 dans les angles opposés du carré, hypoténuse à 45°
on doit placer Cs1 dans un angle restant, avec les Ts1/2 adjacents
on doit placer Ts1 symétriquement, avec les côtés à 45°
mais alors on ne peut plus placer Ps1 !
hmm Ah mais si, je vais couper Ps1 en deux Ts1/2 …hmm

Si la surface du trou était 2, la surface totale vaudrait 10, ça ne marche pas, aucune dimension n'est multiple de sqr(5)
Si la surface du trou était 4, ça marche pas non plus, aucune dimension n'est multiple de sqr(3)
Si la surface du trou est 8; le carré a un côté de 4, le trou a un côté de 2sqr(2);
il n'est pas possible d'obtenir 4 à partir de 2sqr(2) en ajoutant des entiers ou des multiples de sqr(2).
Si le trou est encore plus grand, la largeur de la bordure diminue et on ne peut plus placer les Ts2. Je pense qu'on peut montrer qu'il n'y a plus d'autre possibilité avec des trous encore plus grands.

T'as qu'à manger un baba au rhum, avec une belle forme de tore et un trou rond au milieu...

 #17 - 21-02-2016 00:16:16

golgot59
Elite de Prise2Tete
Enigmes résolues : 48
Messages : 1494
Lieu: Coutiches

Gâteau 1221

Bravo ! Ma conclusion est complètement c**.

Je m'y remets...

 #18 - 21-02-2016 10:26:58

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

GGâteau 121

@BlaiseP : Et pourquoi l'aire du trou serait-elle entière ?

Vasimolo

 #19 - 22-02-2016 10:58:32

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

Gâeau 121

Encore un gâteau impossible sad

J’avais préparé ma solution , elle ressemble beaucoup à celle d’Ebichu que je félicite au passage , mais comme elle est faite , autant la partager .

On suppose que le côté du petit carré du tangram mesure 1 , alors toutes les longueurs s’écrivent [latex]a+b\sqrt{2}[/latex] avec a et b entiers naturels . Le côté c du grand carré doit être supérieur à [latex]2\sqrt{2}[/latex] et la largeur de la bande autour du trou au moins égale à 1 . On obtient alors la double inégalité : [latex]2\sqrt{2}<c\leq3[/latex] dont l'unique solution est c=3 . On est donc ramené à l'exemple que je citais plus haut . Les deux grands triangles vont forcément se positionner sur deux sommets opposés du trou central :

http://www.prise2tete.fr/upload/Vasimolo-carrerouge.png

On peut constater que parmi les pièces restantes seuls les deux petits triangles et le carré sont déséquilibrés en cases jaunes et blanches donc les deux petits triangles ont la même couleur . Malheureusement quand on pose le triangle de taille médiane dans l'une des deux zones laissées libres on fait apparaître deux petits triangles de couleurs différentes .

Merci aux participants .

Vasimolo

 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez (numériquement) à la petite énigme suivante : 

Un berger a 40 moutons, ils meurent tous sauf 18, combien en reste-t-il ?

Sujets similaires

Sujet Date Forum
P2T
Gâteau 76 par Vasimolo
20-04-2014 Enigmes Mathématiques
P2T
Gâteau 119 par Vasimolo
18-01-2016 Enigmes Mathématiques
P2T
Gâteau 105 par Vasimolo
17-09-2015 Enigmes Mathématiques
P2T
Gâteau 99 par Vasimolo
13-06-2015 Enigmes Mathématiques
P2T
Gâteau 106 par Vasimolo
20-09-2015 Enigmes Mathématiques
P2T
Gâteau 52 par Vasimolo
26-02-2012 Enigmes Mathématiques
P2T
Gâteau 3 par Vasimolo
14-04-2010 Enigmes Mathématiques
P2T
Gâteau 128 par Vasimolo
19-10-2016 Enigmes Mathématiques
P2T
Gâteau 122 par Vasimolo
21-07-2016 Enigmes Mathématiques
P2T
Gâteau 49 par Vasimolo
13-12-2011 Enigmes Mathématiques

Mots clés des moteurs de recherche

Mot clé (occurences)
Si 1 et 2 (1) —

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete