Enigmes

Forum dédié aux énigmes et à toutes formes de jeux de logique.

Déconnexion

Tu n'es pas identifié sur Prise2tete : s'identifier.

accueil Accueil forum Forum
[+]

 #26 - 23-10-2015 13:43:01

unecoudée
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 319

Gâteau 10

bonjour.

si je prend le plus grand côté sur lequel je place debout 63 rectangles j'obtiens un ratio de 32/33 . je perd donc 1/33 du gâteau .

#0 Pub

 #27 - 23-10-2015 15:10:29

Franky1103
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 3222
Lieu: Luxembourg

Gâteua 108

Je mets une grosse part au milieu = 1.
Je comble les 3 chutes par une part moins grosse = 3 (cumul = 4).
Je recomble par une part encore moins grosse = 3 + 2 + 2 = 7 (cumul = 11).
Je re-recomble = 7 + 4 + 4 = 15 (cumul = 26).
Encore une fois = 15 + 8 + 8 = 31 (cumul = 57).
Mince, le compte n'y est pas et je ne suis même pas sûr que ce soit optimal.
Affaire à suivre .....

 #28 - 23-10-2015 17:01:51

enigmatus
Expert de Prise2Tete
Enigmes résolues : 0
Messages : 561

âteau 108

Vasimolo #22 a écrit:

@Enigmatus : c'est bien ça mais pourquoi est-ce la meilleure solution ?

On découpe le triangle initial en n bandes horizontales (y compris le triangle vide tout en haut), de hauteurs h_1, h_2,...,h_n.
H est la hauteur du triangle initial, et S sa surface. On définit les coefficients k_i = h_i / H.
La surface perdue est égale à (somme, pour i=1->n)(S * k_i^2).
On sait que somme(k_i)=1, et on veut minimiser somme(k_i^2). On montre facilement que les k_i doivent être égaux (k_i=1/n, surface perdue=S/n).
On veut que n soit le plus grand possible, donc chaque bande horizontale ne contient qu'une part de gâteau, et n=64.

 #29 - 23-10-2015 18:39:39

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

GGâteau 108

@Une coudée : little bug smile
@Franky : tu t'enfonces : il faut faire très , très , très simple !!!!
@Enigmatus : C'est ça et "on montre facilement" va devenir un leitmotiv du fil smile

Vasimolo

 #30 - 23-10-2015 18:52:19

unecoudée
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 319

Gâteau 18

Il me semble avoir donné une réponse en français ; et je ne comprend pas la réponse donnée ; excuse moi de t'avoir importuné.

 #31 - 23-10-2015 19:04:32

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

Gâeau 108

J'avais bien compris : il y a une petite erreur dans ta réponse smile

Vasimolo

 #32 - 23-10-2015 21:56:04

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

hâteau 108

Bon impossible pour moi de charger la moindre image depuis mon ordinateur hmm
Pour le moment je trouve qu'un triangle isocèle rectangle est la meilleur des solutions. Partant du fait que les rectangles s'agencent bien dans un grand rectangle, bon il reste un peu de place puisqu'ils ne sont que 63.
Du coup en coupant le grand rectangle en deux de selon une diagonale et en ajoutant une hauteur de rectangle (petit) à la hauteur du triangle qui passe par son sommet droit est suffisant. Mais il y a sans doute mieux. neutral

shadock


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #33 - 23-10-2015 23:14:11

unecoudée
Professionnel de Prise2Tete
Enigmes résolues : 0
Messages : 319

Gâeau 108

je pense qu'en empilant les 63 parts on perd 1/64 du gâteau.
la largeur d'une part 
                                   [latex]l = \frac{H}{64} [/latex]  H étant la hauteur
associée à la base B parallèle aux longueurs des 63 parts
et de manière générale , le couper en n parts rectangulaires nous fera gaspiller

[latex]\frac{1}{n+1}[/latex] du gâteau .

 #34 - 24-10-2015 08:18:39

Franky1103
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 3222
Lieu: Luxembourg

Gâteua 108

Après une nuit de réflexion smile, la solution est probablement un empilement de 63 rectangles semblables en progression géométrique. Quant à prouver que c'est la solution optimale, il me faudra une autre nuit de réflexion. smile

 #35 - 24-10-2015 08:29:09

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

fâteau 108

@Schadock : ça a l'air juste , il reste à justifier .
@Une coudée : c'est bon . Pourquoi ne peut-on pas faire mieux ?
@Franky : c'est toujours pas ça , tu vas t'en vouloir quand tu vas voir la solution lollol

Vasimolo

 #36 - 24-10-2015 14:57:26

shadock
Elite de Prise2Tete
Enigmes résolues : 39
Messages : 3334

Gâtea u108

Ah oui mais attend 63=9*7 donc ils s'agencent parfaitement dans le grand rectangle roll

Bon j'essaye de finaliser ma réponse au plus vite du coup


"L'expérience est une lanterne qui n'éclaire que celui qui la porte." L-F. Céline

 #37 - 24-10-2015 17:52:21

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

Gâteau 1088

Non Shadock , tu t'éloignes .......

 #38 - 24-10-2015 19:08:57

Franky1103
Elite de Prise2Tete
Enigmes résolues : 49
Messages : 3222
Lieu: Luxembourg

Gâteauu 108

En dernier recours, avant la fin du temps règlementaire, je divise le plus grand côté du triangle en 65 parties égales: les 63 parties centrales forment le petit côté des parts de gâteau toutes perpendiculaires à ce grand côté du triangle, toujours sans prouver un éventuel optimum.

 #39 - 25-10-2015 09:26:44

Vasimolo
Le pâtissier
Enigmes résolues : 49
Messages : 5,426E+3

gâteay 108

Tout a été dit ou presque smile

Voilà comment j'avais vu les choses :

On empile les rectangles sur un côté :

http://www.prise2tete.fr/upload/Vasimolo-reponse108.png

La surface laissée libre représente 64 triangles semblables dont la hauteur totale est celle du triangle initial et dont l'aire totale est proportionnelle à la somme des carrés des hauteurs . Or la somme des carrés est minimale quand toutes les hauteurs sont  égales ( il suffit de développer (h-x)²+(h+x)² pour s'en rendre compte ) .

La surface perdue représente donc 1/64 du gâteau c'est à dire 125 g .

C'est 63+1=64 qui fait fonctionner le problème et c'est pour cette raison que j'ai pensé à Bell , il ne faut pas y chercher une quelconque intention malveillante .   

En tout cas merci aux participants smile

Vasimolo

 #40 - 25-10-2015 11:41:59

portugal
Professionnel de Prise2Tete
Enigmes résolues : 22
Messages : 382

Gâtaeu 108

•    Un peu déçu car je cherchais une explication pour laquelle cette forme d’empilement est optimale au delà de l’explication intuitive sur le fait que les parts « verticales » perdent de la place du fait de la séparation du sommet.

•    Pour la somme minimale je vois que je ne suis pas le seul à ne pas avoir écrit une démo digne de ce nom. Je m’y colle :

-    Soit la somme des Ai ^2 avec Ai quelconque.
-    On note M la moyenne arithmétique de Ai, et des Bi tels que Ai = M + Bi
-    On développe Somme [ (M+Bi) ^2 ] = nM + Somme (Bi) ^2 + 0
                 (car somme Bi=0 par construction)
-    Qui est donc minimum pour Bi=0 quel que soit i
-    D’où Ai=M pour tout i

 

Réponse rapide

Rédige ton message
| | | | Upload | Aide
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool:
Sécurité

Répondez à la devinette suivante : 

Le père de toto a trois fils : Riri, Fifi et ?

Sujets similaires

Sujet Date Forum
P2T
Gâteau 72 par Vasimolo
22-02-2014 Enigmes Mathématiques
P2T
Gâteau 152 par Vasimolo
09-06-2018 Enigmes Mathématiques
P2T
Gâteau 29 par Vasimolo
26-08-2010 Enigmes Mathématiques
P2T
Gâteau 13 par Vasimolo
11-07-2010 Enigmes Mathématiques
P2T
Gâteau 68 par Vasimolo
24-01-2014 Enigmes Mathématiques
P2T
Gâteau 109 par Vasimolo
25-10-2015 Enigmes Mathématiques
P2T
Gâteau 63 par Vasimolo
08-09-2013 Enigmes Mathématiques
P2T
Gâteau 89 par Vasimolo
17-01-2015 Enigmes Mathématiques
P2T
Gâteau 54 par Vasimolo
18-07-2012 Enigmes Mathématiques
P2T
Gâteau 73 par Vasimolo
27-02-2014 Enigmes Mathématiques

Pied de page des forums

P2T basé sur PunBB
Screenshots par Robothumb

© Copyright 2002–2005 Rickard Andersson

Prise2Tete Forum Statistiques Liste des membres Hall of Fame Contact
© Prise2tete - Site d'énigmes et de réflexion.
Un jeu où seules la réflexion, la logique et la déduction permettent de trouver la solution.

Flux RSS de Prise2Tete Forum Jeux & Prise2Tete Test & Prise2Tete Partenariat et Publicité sur Prise2Tete