Bonsoir,
Si je ne me trompe pas, il y a une erreur dans l'énoncé.
Voici mon raisonnement après correction:
le facteur pour x est :
1-4/(2x+1)²
= [(2x+1)²-4]/(2x+1)²
= (2x+1-2)(2x+1+2)/(2x+1)²
= [(2x-1)/(2x+1)].[(2x+3)/(2x+1)]
Le facteur précédent, pour x-1, est :
[(2(x-1)-1)/(2(x-1)+1)].[(2(x-1)+3)/(2(x-1)+1)]
= [(2x-3)/(2x-1)].[(2x+1)/(2x-1)]
Le facteur suivant, pour x+1, est :
[(2(x+1)-1)/(2(x+1)+1)].[(2(x+1)+3)/(2(x+1)+1)]
= [(2x+1)/(2x+3)].[(2x+5)/(2x+3)]
Si on multiplie ces 3 facteurs, on trouve :
[(2x-3)/(2x-1)].[(2x+1)/(2x-1)].[(2x-1)/(2x+1)].[(2x+3)/(2x+1)].[(2x+1)/(2x+3)].[(2x+5)/(2x+3)]
et tout ce qui est souligné ce simplifie. Il en va de même pour les facteurs précédents et les suivants. Seuls les premier et dernier facteurs ne sont pas totalement simplifiés. Il ne reste alors plus que :
-1/1 . 201/199
= -201/199
enfin si je ne me trompe pas...